
Managing On-Chip Memory Hierarchies
Sagar Karandikar, Albert Magyar, and Howard Mao

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

{sagark, magyar, zhemao}@eecs.berkeley.edu

Abstract—A variety of optimizations can be used to improve
the performance of memory systems without requiring significant
modifications to the memory hierarchy. We implement three such
optimizations both in isolation and combination to explore the
performance characteristics of each for different workloads. Our
optimizations consist of a vector runahead unit that performs
prefetches in a decoupled vector processor, a DMA engine that
can perform software-controlled prefetches, and a software-
managed local store. Furthermore, we compare pseudo-LRU
and random replacement policies with our other optimizations.
We implement our designs in RTL, provide area estimates, and
perform cycle-accurate simulations using a simulated memory
hierarchy validated against a Samsung Exynos SoC.

I. INTRODUCTION

In this work, we analyze the impact of several on-chip
memory system features on streaming workloads. Standard
memory hierarchies handle these workloads poorly due to
long cache refill latencies from compulsory misses. In the
past, there have been many attempts to either increase the
performance of caches or reduce the overhead of hardware
management. Traditional hardware prefetchers [?] operate by
speculatively requesting data from higher levels of the memory
hierarchy when it is possible to pattern-match the stream
of requested addresses. This has the ability to reduce or
eliminate the latency contribution of cache misses for some
workloads. However, such a prefetching scheme may end up
polluting the cache with data that will never be used. In our
work, we implement an alternative form of prefetching, a
vector runahead unit (VRU) for the Hwacha decoupled vector
processor [?]. The VRU looks ahead in the instruction stream
for vector loads and stores. It can then send prefetches for
these memory locations before the vector processor executes
the instructions. Because many common workloads do not
exercise predication or consensual branches on Hwacha, these
prefetches are non-speculative in most cases.

In addition to the VRU, we implemented virtual local store
(VLS), a feature which allows a portion of the L2 cache to be
partitioned off for use as a software-managed local store. Data
stored in VLS will not be subject to eviction by the cache’s
replacement policy and thus is guaranteed to stay in the L2
cache until the VLS allocation is released. VLS provides many
of the benefits of traditional scratchpad memories without
the burden of having to manage data movement between the
scratchpad and backing memory.

While VLS takes care of allocating a scratchpad memory,
a secondary piece of hardware is necessary to quickly fill

the VLS with data instead of relying on the standard word-
size load and store instructions. To provide this functionality,
we implemented a DMA engine which can perform strided,
segmented transfers between two regions of memory as well
as a strided, segmented software-controlled prefetch, which
simply moves data up the memory hierarchy. Besides its use in
concert with VLS, the DMA engine can be used as a software-
managed prefetcher to replicate some of the functionality of
the VRU.

We evaluated the performance of these features and in-
vestigated how they interact by running a set of streaming
benchmarks with a special focus on a repeated SAXPY bench-
mark. Initially, we found that VRU and DMA prefetching both
led to an improvement in SAXPY performance. However, a
later optimization in the Hwacha processor allowed SAXPY
to use the full cache bandwidth without prefetching, so the
two prefetching schemes no longer improved performance for
that particular benchmark. On benchmarks that are incapable
of saturating the memory hierarchy on their own, the VRU
and DMA engine continue to provide a performance increase.

VLS improved SAXPY performance across the board. How-
ever, much of the benefit came from preventing unnecessary
conflict misses caused by the random replacement policy. This
led us to implement Pseudo-LRU replacement in our L2 cache.
We found that, with Pseudo-LRU, the system can reach a level
of performance close to that of VLS.

II. RELATED WORK

The decoupled design of the Hwacha vector processor and
the resulting ability to prefetch vector memory operations
using a vector runahead unit is motivated by earlier work on
refill/access decoupling by Batten et al. [?].

Our desire to explore the use of VLS and DMA is moti-
vated by the Leverich et al. paper [?] comparing cache-based
memory systems to memory systems using explicitly-managed
local stores, which the paper terms “streaming memories”.
Leverich found that streaming memories confer some advan-
tage for benchmarks with very little data re-use, but deemed
that the benefits were not worth the large overhead of having
to explicitly manage all data movement between the local
store and backing memory. However, we believe that VLS can
capture most of the benefits of streaming memories without
burdening the programmer with explicit management of the
memory hierarchy.

Our implementation of VLS is based on the description of
the system given in a tech report by Cook et al. [?]



TABLE I
BASELINE SYSTEM CONFIGURATION

Parameter Value
Cache line size 32B

Scalar Processor
Cores 1
Frequency 1000 MHz

L1I$, L1D$
Size 16kB
Associativity 4
Replacement random

Hwacha
Lanes 1
Mixed-precision Yes

L2$

Size 256kB
Banks 8
Associativity 8
Replacement random

DRAM 2-channel, 933 MHz LPDDR3

III. BASELINE SYSTEM DESIGN

Our baseline design is a RISC-V-based SoC generated by
the Rocket Chip SoC generator. The SoC includes Rocket, a
single-issue in-order 64-bit RISC-V core, and Hwacha, a de-
coupled vector coprocessor. Rocket and Hwacha are connected
by the RoCC coprocessor interface, which allows Rocket to
send custom instructions to Hwacha for execution. The core
is backed by a cache-coherent memory system with a multi-
banked L2 cache and multi-channel DRAM interface. The full
system architecture is shown in Figure ??.

The Hwacha coprocessor is a vector processor with a multi-
banked vector register file and several pipelined execution
units, including an integer ALU and an FMA unit supporting
double-, single-, and half-precision computation.

One key difference between the Hwacha processor and other
vector processors is that the control flow of the processor is

T
ile

M
em

 S
ys

te
m

D
Si

m
2

Rocket
Control

Processor

L1I$ L1D$

RoCC Socket
Hwacha Vector

Accelerator

L2$
Bank 0

L2$
Bank 1

L2$
Bank 2

L2$
Bank N

AXI4 Crossbar

LPDDR3
Channel 0

LPDDR3
Channel 1

L1VI$

L1-to-L2 TileLink Crossbar

…

LPDDR3
Channel N…

TL/AXI4 …TL/AXI4 TL/AXI4 TL/AXI4

Uncached TileLink IO

Cached TileLink IO

AXI4 IO

Fig. 1. Baseline System Architecture

[Control Thread]

1 saxpy:
2 vsetcfg ...
3 vmcs vs0, f1
4 stripmine:
5 vsetvl t0, a0
6 vmca va0, a2
7 vmca va1, a3
8 vf saxpy_vfb
9 slli t1, t0, 2

10 add a2, a2, t1
11 add a3, a3, t1
12 sub a0, a0, t0
13 bnez a0, stripmine

[Vector Thread]

1 saxpy_vfb:
2 vlw vv0, va0
3 vlw vv1, va1
4 vfma vv1, vs0, vv0, vv1
5 vsw vv1, va1
6 vstop

Fig. 2. SAXPY kernel mapped to Hwacha architecture a0 holds the length
n, f1 holds the scalar A, a2 holds a pointer to the float array X, and a3 holds
a pointer to the float array Ydecoupled from the vector execution. Control instructions such
as setting scalar registers, address registers, and the vector
length register come into Hwacha from Rocket via a command
queue. The instructions for vector computation come from a
separate instruction stream pulled in from memory through a
dedicated vector instruction cache.

Figure ?? shows example code for Hwacha, which imple-
ments a single-precision aX + Y (SAXPY) operation. The
code is split into a control thread (Figure ??) and vector thread
(Figure ??). The control thread contains both standard RISC-
V instructions and Hwacha control instructions. The control
instructions first set the scalar and address registers in Hwacha
using the vmcs and vmca instructions, then enters a strip-
mining loop which sets the vector length register using the
vsetvl register and starts the vector thread using the vf
instruction.

The vf instruction tells the vector execution unit to begin
executing vector instructions at a particular address. These
instructions load vector length sections of X and Y into two
separate vector registers. It then performs an FMA, multiplying
one register with a scalar and adding the result to the other
vector before storing it back to the second vector register. The
result is then stored back to memory. Once this computation is
completed, the vector thread executes the vstop instruction,
which causes the vector thread to suspend execution and wait
to be restarted by the next vf instruction from the control
processor.

The vf instruction is non-blocking. Once the instruction
is sent to the vector execution unit, the control processor can
continue executing, thus queuing up more vf commands. This
makes sure that both neither the control processor nor the
vector processor goes idle when there is still work to be done.
The control processor need not wait for the vector processor
to finish its computation, and the vector processor is not stuck
waiting for the control processor to supply more work.

IV. VECTOR RUNAHEAD UNIT

A. VRU Design

The Vector Runahead Unit (VRU), shown in Figure ??,
takes advantage of the decoupled nature of the Hwacha archi-



VF Block Fetch/Decode

From Rocket
Control Processor

From Master Sequencer
VF Completion Ack

Prefetch 
Queue

VF Block Load/
Store Byte
 Counter

To/From
VI$

RoCC Command Decode

Throttle 
Queue

Global Run-
ahead Counter

Next GRC
Prefetch 

Issue

Outstanding 
Req. Counter

Throttle Manager

Request Ack

Throttle 

To/From L2$

VRCMDQ

Fig. 3. VRU Implementation

tecture to hide memory latency and maximize functional unit
utilization. Unlike out-of-order machines with SIMD that rely
on the reorder buffer for decoupling and GPUs which rely on
multithreading, the Hwacha design is particularly amenable
to prefetching without relying on large amounts of state. In
Section ??, we discuss future improvements to enhance this
decoupling further.

The VRU snoops on the command queue between Hwacha
and the Rocket control processor. It receives the current
vector length from vsetvl commands as well as addressing
information from vmca commands, which it stores in an
internal copy of the vector address register file. Upon receiving
a vf command, the VRU fetches instructions from Hwacha’s
L1 instruction cache and decodes unit-strided load and store
instructions. Using the previously collected address informa-
tion along with the vector length, the VRU issues prefetching
commands directly to the L2, in anticipation of loads and
stores issued by the vector unit. Unlike in other machines,
these prefetches are in most cases non-speculative. Since the
address registers and vector length cannot be changed by the
worker thread, the VRU will be certain what data is being
fetched at each vector load and store instruction.

Efficiently using L2 tracking resources and managing the
runahead distance are critical to balancing latency-hiding with
allowing the rest of Hwacha to make forward-progress at a
reasonable pace. We limit the VRU to using at most one-third
of the outstanding access trackers, since in the unit strided
case, the VRU’s prefetch blocks are twice as large as the
execution unit’s loads and stores.

In managing the runahead-distance of the VRU, the con-
troller must avoid two extremes. A VRU that runs too close
to real-time execution risks invoking a performance penalty.
This penalty arises not only from the obvious inability to
hide latency, but also because the VRU wastes L2 tracking
resources and creates a hotspot around one bank of the L2
cache. A VRU that runs too far ahead of real-time execution

1 innermost:
2 # Send addresses of vectors in B to
3 # Hwacha address registers
4 vmca va4,a5
5 add a5,t1,a5
6 vmca va5,a5
7 add a5,t1,a5
8 vmca va6,a5
9 add a5,t1,a5

10 vmca va7,a5
11 # Load values from A matrix
12 # into Rocket regs
13 ld s6,0(a4)
14 ... # 14 more load instructions
15 ... # here for vs2 ... vs15
16 ld s5,24(t0)
17 # Copy values from A matrix to
18 # Hwacha scalar regs from Rocket
19 vmcs vs1,s6
20 ... # 14 more vmcs instructions
21 ... # here for vs2 ... vs15
22 vmcs vs16,s5
23 # Execute vf block
24 vf 0(t3)
25 ...

Fig. 4. Control Thread for DGEMM kernel mapped to Hwacha architec-
ture (Innermost Loop Body)

has the potential to remove items from the L2 that are in-use
or that have been prefetched but not yet used.

To prevent the VRU from running too close to the execution
units, we ignore a small number of vector fetch blocks at
startup. We observe that sacrificing the prefetch of the loads
and stores from one or two initial vector fetch blocks greatly
increases the ability of the VRU to runahead in the steady
state. To prevent the VRU from running too far ahead of the
execution units, one can implement a throttling scheme that
counts the total number of bytes of loads and stores that the
VRU has decoded but that have not yet been encountered
by the execution units. In a vector processor like Hwacha,
this scheme is hindered by conditional execution of loads and
stores in vector fetch blocks using predication. Our scheme
ensures that the counts in the VRU’s throttle mechanism are
synchronized at the end of each vector fetch block, regardless
of the presence of unexecuted loads and stores due to pred-
ication and branches. In our scheme, the VRU maintains a
queue containing individual load/store byte counters for each
vector fetch block that the VRU has seen, but that has not
been acknowledged by the execution units. A global counter
is also incremented by this per-block count of bytes whenever
the VRU finishes decoding a vector fetch block. When the
execution units complete the execution of a vector fetch block,
an acknowledgement is sent to the VRU, which pops an entry
off of the load/store byte count queue and decrements the
global load/store byte counter by the appropriate amount. This
global counter is then used to throttle the runahead distance
of the VRU.

B. Hwacha CMDQ Compression

One significant result of our evaluation of the VRU is the
realization that the command queue that decouples Rocket



and Hwacha is a limiting factor for runahead distance in
many benchmarks. Consider the code in Figure ??, which
constitutes the body of the inner loop of an optimized dgemm
benchmark for Hwacha, that achieves 93% of peak FLOPs
with the aid of the prefetcher. This benchmark performs a
blocked matrix multiply of the form C = A ∗ B. In an ideal
case, this innermost loop should contain only a vf command,
which would result in a command queue containing only
vf commands in the steady state, allowing the prefetcher
to runahead significantly. However, as Figure ?? shows, the
programmer naturally needs to supply new addresses and
scalar values for each vector fetch block that is executed.
Accounting only for the extra commands in the inner loop
itself, for each vf block executed, there are 16 scalars and
4 vector addresses copied to Hwacha. Because this queue
contains 64-bit addresses per-entry, its size must be relatively
small (32 entries in the current implementation). Thus, the
queue length is clearly a limiting factor of the potential amount
of runahead. In general, there are three “setup” commands that
reduce the amount of potential runahead: vsetvl, vmcs, and
vmca. In the following sections, we suggest methods to reduce
the number of these commands issued.

1) Compressing vsetvls: As a preliminary step, we im-
plemented an optimization to reduce the number of vsetvl
commands in the queue. A common pattern of code with
machines like Hwacha is the use of a set-vector-length in-
struction in each iteration of the stripmining loop to indicate
to the vector unit the amount of data that is left to process.
However, for most iterations of the loop, the vector length
used is simply the max vector length supported by the vector
machine. Therefore, in the queue processing stage, we track
the current vector-length that is in-use. If we detect a vsetvl
command that would leave the vector-length in-use unchanged,
we do not dispatch it to the Hwacha or VRU queues. As
expected however, this only reduces one setup command per
vector fetch block and thus our preliminary evaluation showed
a negligible improvement across a set of *axpy and *gemm
benchmarks.

2) Compressing vmcas: Another potential optimization is
the reduction of vmca commands by employing an auto-
increment mechanism. This would take advantage of the fact
that in many cases, there is a pattern to successive addresses
sent to particular address registers in Hwacha. For example, in
the case of dgemm, vmca commands in the inner loop supply
addresses to an address register that are 4∗vectorlength apart
on each successive iteration. With the addition of special-case
vmcs instructions that indicate the need to auto-increment,
Hwacha could automatically perform this operation on suc-
cessive vector fetch blocks after receiving the base address
through a single set of vmca commands during the first
iteration.

3) Compressing vmcses: One final optimization is the
reduction of vmcs commands in the queue. A common pattern
of utilizing vmcses is shown in the dgemm benchmark. This
consists of performing a load on the control processor and
then issuing a vmcs to move the loaded data to Hwacha’s

scalar registers for use in computation. If we instead shift the
responsibility of loading this data to Hwacha, we can use the
addressing pattern to reduce the amount of information sent to
Hwacha through the queue. In the case of dgemm, the ability to
perform a segmented-strided vector load and stripe the loaded
data across the scalar registers would reduce the number of
vmcses to one per vf command in the steady state. Using
address auto-increment as described in the previous section
with this optimization would reduce this to zero vmcses per
vf command in the steady state.

V. VIRTUAL LOCAL STORES

Previous work [?] has shown that many streaming work-
loads can exhibit better cache performance when features
such as hints, pinning, and streaming prefetching are added.
However, this adds complexity, along with a potential point of
software control through instructions like Prepare For Store.
Instead, a more general solution for enhancing the memory
access time of workloads that challenge hardware-managed
caches is to allow the use of software-managed local stores [?].
While local stores typically take the form of additional,
explicitly addressed memories on a chip, it is possible to
combine them with caches to allow the programmer to flexibly
use a memory in either an implicitly or explicitly addressed
form. One specific mechanism for flexible on-chip memory
hierarchies is Virtual Local Stores (VLS) [?], a proposed ad-
dition that adds a way-based partitioning scheme to an on-chip
cache in order to overlay a software managed scratchpad, in
concert with a lightweight translation mechanism to virtually
address data that is held in the local store.

A. ISA Extension

The RISC-V VLS extension divides the functionality into
two parts: a lightweight mechanism for translating addresses
within a hart’s VLS range and a mechanism for pinning
physical address segments in a cache. Used in concert, these
allow for virtually-addressed regions of memory to enjoy both
protection and software management of locality.

At any given time, a hart may have exactly one active VLS
region. Since VLS space is requested by the user process
for buffers where great locality of reference is expected, a
separate, lightweight mechanism is provided to translate a
virtual address when it falls within the hart’s active VLS
region. This translation step is base-and-bound, with the extent
of the virtual region being established by the hart’s vlsvbase
and vlssize CSRs. Addresses falling in that region will be
translated using the vlspbase register.

paddrvls = vlspbase+ vaddrvls − vlsvbase

On a particular machine supporting the RISC-V VLS exten-
sion, it will be possible to support ‘pinning’ some number
of physical address segments. This pinning is not a guarantee
that accesses to these addresses will never miss, as it only
establishes a contract that standard cache replacement will not
evict the data. These pinned segments are a resource managed



by the system; therefore, properties of the machine related to
physical segment pinning must be exposed to the supervisor.

The VLS translation mechanism can be completely de-
scribed using per-thread state, so it is configured using CSRs.
In contrast, the physical address pinning modifies the operation
of the on-chip memory hierarchy. This configuration can pro-
duce performance effects that are visible beyond a particular
thread, so it is more naturally controlled through memory-
mapped configuration registers. For each cache supporting
VLS, a set of registers will be demarcated within the memory
map specified by the hardware device tree. The lowest word
address will map to nvlssegs, a read-only value describing
the number of VLS allocation segments. This value will
then be followed by the appropriate number of allocation
descriptors, each consisting of a pbase and size field. By
writing these registers, the hardware abstraction layer can
provide a binary interface for configuring a flexible number
of VLS allocations co-resident in one cache.

B. Implementation

In order to perform concrete evaluations, a concrete imple-
mentation of VLS is provided as part of the L2 cache of the
Rocket Chip generator. As shown in Figure ??, the VLS is
managed through way-based allocations in a VLS manager.
An N -way cache has slots for N−1 allocations, each with an
individual physical base address and zero to N − 1 allocated
ways. The VLS manager is integrated into the replacement
strategy of the cache, allowing the VLS allocation state to
influence the placement of blocks in the cache. In particular,
by exercising control over VLS block placement, the VLS
manager can maintain a direct mapping of each VLS block
into a particular set and way. This behavior is enabled by the
way-based allocation strategy, which factors heavily into the
RTL-level implementation of the manager.

In order to set up allocations, software routines will perform
MMIO to the VLS allocation segment descriptors. In Rocket
Chip, this required the creation of a NASTI slave interface
for the L2 metadata. In practice, this is implemented as an
interconnect network mirroring traffic to an MMIO slave in
the VLS manager of each bank. This configuration state adds
minimal overhead to the size of the cache. Furthermore, the
VLS translation will be set up using the appropriate CSRs,
which are tightly integrated into the TLB of the Rocket
pipeline.

Upon receiving a block address from the inner levels of the
memory system, the L2 metadata array passes the address to
the VLS manager. The VLS manager uses a set of parallel
base and size checks to determine if the address falls within
a VLS allocation. If it does not, the metadata is accessed just
as with a normal cache lookup. If it does, the access will be
based on the offset of the block from the base address of its
allocation.

By exercising control over VLS block placement, the man-
ager can maintain a direct mapping of each VLS block into a
particular set and way; in particular, since allocations must be
cache-way-size-aligned, the offset of a VLS block from the

TABLE II
CACTI-BASED ENERGY AND AREA FOR 45NM LOP L2 DATA AND

METADATA SRAMS

SRAM Read dynamic energy (pJ) Area (mm2)

32kB 6T, 256b ports 17.1 0.317

2048B 8T, 128b ports 3.08 0.0310

256B 8T, 16b ports 0.344 0.00212

TABLE III
READ ENERGY FOR VLS AND CACHE ACCESSES WITH SPLIT AND UNIFIED

METADATA

Operation Total dynamic E/op (pJ) Relative E/op

Split metadata cache read 19.9 0.99

Split metadata VLS read 17.5 0.87

Contiguous metadata any read 20.2 1.0

base address of its allocation can be used to find the home
way of the block. By maintaining one key invariant, the VLS
system can guarantee that no other way will contain the VLS
block and that it will not be evicted by an access to any other
block while the allocation holds.

Invariant: under a fixed VLS allocation state, a line from
a given (way, set) pair is evicted if and only there is a miss
to the block with the appropriate set index in the region of a
VLS allocation mapped to that particular way.

C. Partial Metadata Reads

As a product of the VLS system invariants, it is always
possible to perfectly predict which way (if any) will hold a
given block of VLS data. Therefore, an enhanced metadata
array implementing per-way metadata read enables was added
to the L2 cache. This provides the ability to save energy by
avoiding read operations to ways that need not be checked.

In order to provide a preliminary evaluation before pushing
the design through a commercial process, the split and unified
metadata arrays were modeled using the CACTI memory
model [?]. This model provides rough approximations of area
and dynamic energy per read operation for arbitrary SRAM
parameters. Table ?? shows the output of the CACTI model,
while Table ?? shows the relative dynamic read energies of
VLS and cache accesses using the outputs of the model. Under
the CACTI model, the split metadata arrays show some degree
of promise given the 13% reduction in energy in VLS accesses.
Although the model is of low fidelity, this indicates that the
modification shows sufficient promise to be evaluated using a
real, commercial process.

VI. DESIGN OF THE DMA ENGINE

A. The DMA ISA Extension

In order to accelerate data movement between VLS alloca-
tions and other parts of memory, we designed a direct memory
access (DMA) unit which can copy or prefetch data into the L2
cache at high bandwidth. The DMA unit is exposed to software
as a set of custom instructions. The first instruction allows the
user to set the values of four shape registers, which control the



Fig. 5. Graphical depiction of VLS accesses

shape of the data being copied. These shape registers are the
number of segments in the transfer, the size of each segment,
the stride between source segments, and the stride between
destination segments. This strided, segmented copy function
is mainly useful for copying sub-sections of matrices.

After setting up the shape registers, the CPU can initiate
the actual transfer by executing the “copy” instruction, which
takes a source and destination address and performs the data
transfer according to the setting of the shape registers.

Besides the copy operation, which moves data from one
location to another, the DMA system also provides a software-
controlled prefetch operation. This does not move data to a
new location, but rather prefetches it from main memory to
the L2 cache (if the data is not already resident in cache). The
prefetch operations are also strided and segmented.

B. Implementation

The DMA system is composed of two distinct parts. The
first is a DMA client, which resides on each CPU core as a co-
processor. This client handles virtual address translation and
segmentation. It then sends requests for contiguous transfers
to a DMA engine located next to the L2 cache. The DMA
engine consists of multiple DMA trackers, each of which can
handle an independent DMA transaction. For copy operations,
the tracker requests one or two cache blocks from memory at
a time and stores them in a buffer. It then aligns the data in
the buffer and stores it to the L2 cache. For prefetch requests,
the DMA tracker simply sends block prefetch requests to the
L2. This operation can run at a much higher bandwidth than
the copy operation since it does not need to buffer any data
itself.

VII. BETTER REPLACEMENT POLICIES: PSEUDO-LRU

After early evaluations were performed, it became obvious
that the random replacement policy in the L2 cache was crip-
pling performance in many benchmarks. In particular, many of

L2 Cache

DMA
Client

CPU

DMA
Client

CPU

DMA
Tracker

DMA
Tracker

DMA Engine

Fig. 6. DMA system design

the advantages of using VLS arise from the ability to defeat
sub-optimal replacement policies. While it is quite easy to
construct kernels with unit stride memory access patterns that
produce poor results under random replacement, comparisons
are much more valuable when made against a realistic set
of baseline machine parameters. Therefore, a more effective
pseudo-least recently used (PLRU) replacement policy became
a critical part of the design space for the memory system
experiments.

Tree-PLRU is a well-known replacement policy that stores
a marshalled representation of a decision tree for each set in
a set-associative cache, as shown in Figure ??. For an N -way
cache, this tree has N leaf nodes (each corresponding with a
way) and N − 1 internal nodes. Each internal node contains a
state bit indicating which child is less recently used, allowing
the evicted way to be found by traversing the tree. When an
access hits in the cache, the internal nodes on the path from
the hit way to the root are marked to point off the hit path.

In practice, Tree-PLRU is fairly efficient in logic and in
state for moderately associative stores. Since only the internal
nodes carry state, an N -way cache requires N−1 state bits per
set, along with a single shared implementation of the update
algorithm, which is relatively small for N ∈ {4, 8} after logic
minimization. When adding this replacement policy to the L2



Fig. 7. Tree-PLRU replacement policy

cache from the reference baseline design point in Table ??,
7 bits of replacer state are added to each of the sets in each
of the banks. Although these would likely be implemented
as flip-flops to allow decoupling of replacer updates from
metadata updates, this still represents only a modest increase in
utilization relative to the 136 bits of metadata that are already
held with each set.

Adding Tree-PLRU to the Rocket Chip generator required
the creation of a new class hierarchy of stateful L2 replacers
conforming to the pipelining of replacer accesses and updates
in the L2 metadata unit. The state resides in a synchronous-
read dual port RAM of 128x7b for each bank, and the
pipelined replacement policy does not affect the critical path.

VIII. EVALUATION RESULTS

A. Simulated Memory System

In order to provide reasonable DRAM performance in
simulation, we utilize DRAMSim2 [?] in our simulations.
We supplied DRAMSim2 with the timing parameters of a
Micron LPDDR3 part matching those of the dual-channel
933MHz LPDDR3 on the Samsung Exynos 5422 SoC, which
contains an ARM Mali-T628 MP6 GPU. We use ccbench
to empirically validate that our simulated memory hierarchy
is similar to that of the Exynos 5422 SoC.

The ccbench benchmarking suite [?] contains a variety
of benchmarks to characterize multi-core systems. We use
ccbench’s caches benchmark, which performs a pointer
chase to measure latencies of each level of the memory hier-
archy. In unit-stride mode, each pointer in the array of pointers
points to the next contiguously placed pointer in memory.
In cache-line stride mode, each pointer points to another
pointer a cache-line size away in memory to circumvent spatial
prefetching. In random-stride mode, each pointer points to a
random pointer in the array to avoid both stride and stream
prefetching. The size of the array of pointers can be varied to
exercise differing levels in the memory hierarchy.

Figure ?? compares the performance of our cycle-accurate
simulated memory hierarchy against the Exynos 5422 using
the caches benchmark in ccbench On the simulated RISC-
V Rocket core, ccbench measures cycles, which we normal-
ize to nanoseconds by assuming the 1 GHz clock of previous
silicon implementations of Rocket cores [?]. On the Exynos
5422, ccbench measures wall-clock time to produce our
results.

This baseline comparison highlights two important features
that validate our experiments. Firstly, while the L1 and L2

TABLE IV
AREA RESULTS FOR OPTIMIZATIONS

VRU DMA Rocket-Chip

Area (mm2) 0.00792 0.0121 1.62

% of Rocket Chip 0.5 0.7 100.0

cache sizes differ between the Rocket core and the Exynos
5422, the L1 and L2 caches have similar latencies in terms of
processor clock cycles. With both a 1 GHz Rocket core and a 2
GHz ARM Cortex-A15, the L1 hit latency is approximately 4
cycles and the L2 hit latency is approximately 24 cycles. Sec-
ondly, both the simulated LPDDR3 used in our experiments
and the LPDDR3 in the Exynos 5422 achieve similar latencies
of approximately 110 ns.

The only significant latency difference between the memory
system of Rocket Chip and that of the Exynos 5422 is exposed
once the array size exceeds the size of the L1 or L2 caches.
This discrepancy can be explained by the presence of a
streaming prefetcher present in the Cortex-A15, which can
automatically prefetch both unit-strided and non-unit-strided
loads and stores [?].

B. VLSI Results

The Synopsys ASIC CAD toolflow (Design Compiler, IC
Compiler) was used to map the Chisel-generated Verilog to a
standard cell library and memory-compiler-generated SRAMs
in a widely used 28nm technology, using 8 of 10 metal layers
for routing. We obtained area estimates as shown in Table ??.
As expected, both the VRU and DMA Engine represent a very
small fraction of the area.

C. Evaluating VRU and Replacement Schemes

The use of VRU or the choice of replacement scheme is
transparent to software, so we could run the existing Hwacha
benchmark suite with these hardware changes to evaluate their
effect on performance. Figure ?? shows the number of cycles it
took to complete several benchmarks using VRU or not using
VRU and using random replacement or PLRU replacement. As
expected, Hwacha with VRU enabled consistently does better
than without VRU, and PLRU replacement consistently does
better than random replacement.

D. Evaluating DMA Prefetching and VLS

Using DMA prefetching or VLS requires software modi-
fications, so we decided to focus on a single benchmark for
evaluating the performance effects of these two features. The
benchmark we chose was a repeated SAXPY. In this variant
of SAXPY, we accumulate multiple X vectors into Y. So if
regular SAXPY is the operation.

Y = aX + Y

Repeated SAXPY is the operation

Y = aX0 + aX1 + ...+ aXn + Y



1 kB 2 kB 4 kB 8 kB 16 kB
32 kB

64 kB
128 kB

256 kB
512 kB

1 MB
2 MB

Array Size

1

2

4

8

16

32

64

128

256
Ti

m
e 

Pe
r I

te
ra

tio
n 

(n
s)

L1 D-Cache
(16 kB)

~4 cycles

L2 Cache
(256 kB)

~24 cycles

DRAM
~110 ns

RISC-V Rocket @ 1.00 GHz

Unit Stride Cache Line Stride Random Stride

1 kB 2 kB 4 kB 8 kB16 kB
32 kB

64 kB
128 kB

256 kB
512 kB

1 MB
2 MB

4 MB
8 MB

16 MB
32 MB

64 MB
128 MB

256 MB

Array Size

1

2

4

8

16

32

64

128

256

Ti
m

e 
Pe

r I
te

ra
tio

n 
(n

s)

L1 D-Cache
(32 kB)

~4 cycles

L2 Cache
(2 MB)

~24 cycles

DRAM
~110 ns

Samsung Exynos 5422 (ARM Cortex-A15) @ 2.00 GHz

Unit Stride Cache Line Stride Random Stride

Fig. 8. ccbench “caches” Memory System Benchmark

For this benchmark, we compared three replacement
schemes: VLS with random replacement, normal random
replacement, and pseudo-LRU replacement. For the VLS case,
we pinned only the output Y in a VLS segment, since it is
accessed repeatedly throughout the benchmark, whereas the X
vectors are accessed only a single time.

We compared four prefetching schemes: no prefetching,
DMA prefetching, VRU prefetching, and DMA and VRU
prefetching combined. While the latter scheme may seem
redundant, since the VRU and DMA unit are prefetching the
same blocks, we include it in this report as the results we
received were somewhat unexpected. The results of running
repeated SAXPY with the various combinations is shown in
Figure ??.

In all prefetching cases, simple random replacement per-
forms the worst. Blindly replacing ways leads to a lot of
unnecessary evictions and conflict misses. VLS performs the
best out of the three. Fixing Y in the cache is a big win,
since we access that array multiple times, and we do not
want the replacement policy to evict those blocks in favor of
data from X, since those are only accessed once. As expected
Pseudo-LRU replacement works quite well, and is generally
approaches the performance of VLS, with the added benefit
that no software modifications need be made.

As far as prefetching goes, any form of prefetching im-
proves the performance above the baseline. The VRU per-
forms slightly better than software-controlled DMA prefetch-
ing. However, the DMA prefetching code wasn’t particularly
optimized. It simply prefetches one vector fetch block ahead
at the beginning of the strip-mining loop. With some more
tuning, the DMA prefetcher might be able to beat the VRU.
However, this need for manual performance tuning is the main
pitfall of software prefetching. Surprisingly, DMA prefetching
combined with the VRU produces better performance than
either prefetching scheme by itself. One would think that this
shouldn’t be the case, since they are prefetching the same
data. To figure out why this was the case, we looked at the

waveforms of the test runs and the L2 performance counters.
From the waveforms, we found that the DMA prefetcher was
fetching one block ahead of the VRU. So we hypothesized that,
while fetching block N, the VRU sometimes evicts data from
block N+1 that is being fetched by the DMA prefetcher. In the
next phase, the VRU refetches the data that was evicted. This
effectively gives two chances to make sure the data is in cache
before the processor requests it. This hypothesis was validated
when we checked the performance counters and saw that the
DMA+VRU version had both more hits and more misses in
the L2. Indeed, the performance counters shown in Figure ??
demonstrate that the extra performance comes at the price
of significantly increased L2 cache traffic and consequently
energy usage.

In addition to repeated SAXPY, we also ran a streaming
histogram benchmark, which runs through an array of integers
from 0 to 999 and counts the frequency of each integer. The
bin counts are updated using an indexed vector atomic add
operation. For the VLS tests, the bin counts are pinned with
VLS. The results of this benchmark are shown in Figure ??.
As before, both DMA and VRU in isolation do better than
the baseline, with VRU being marginally faster than DMA.
However, unlike SAXPY, the case with DMA and VRU
combined does not perform faster than VRU in isolation. It
does slightly worse than VRU alone and slightly better than
DMA alone.

These benchmarks come with a big caveat, which is that
they were done using a slightly older version of the Hwacha
processor. The newest changes increase the performance of the
processor so that the regular vector memory unit can saturate
the memory bandwidth without using prefetching. As a result,
for SAXPY, which has a low computation to memory usage
ratio, prefetching no longer leads to any performance gains.
However, we think these results are still somewhat interesting,
since they give an indication of what performance would be
like given a more compute-heavy benchmark.



Fig. 9. Old Hwacha results

E. Evaluating VRU and Replacement w/ Improved Hwacha

With the improved Hwacha execution unit, the results
look like those given in Figure ??. For all of the *AXPY
benchmarks and vector-vector add, enabling the VRU causes
Hwacha to perform worse. As mentioned above, this is because
these benchmarks do little computation relative to the amount
of data fetched, and there is very little data re-use. As a result,
the vector execution unit by itself can fill up the memory
bandwidth, so the only effect the prefetch requests have is to
eat into bandwidth that would otherwise be used to actually
fetch the data.

For the *GEMM benchmarks, there is considerably more
computation and data re-use, so the vector execution will not
fill up the memory bandwidth. As a result, prefetching from
the VRU will still lead to performance gains, since it can
prefetch ahead during the periods when the execution unit is
not making memory requests itself.

PLRU still performs better than random on all the *AXPY
benchmarks. For *GEMM, when VRU is disabled, the PLRU
performs about as well or slightly better than random replace-

Fig. 10. Repeated SAXPY results

Fig. 11. Streaming histogram results

ment. This is because the matrices we use have dimensions
which are multiples of the cache line size. As a result, set
conflicts are more frequent that in *AXPY. Since PLRU only
ensures that the most recently used way is not evicted, it
does not handle frequent set conflicts well. When VRU is
enabled, PLRU either does about the same or slightly worse
than random. This might be a pathological case for PLRU.
Since the most recently accessed way will be the prefetched
line, it makes the line that is currently being accessed by the
execution unit more likely to be evicted.

IX. CONCLUSION

The most important thing we learned from this project is that
it is important to start from a good baseline. Vector code which
does a lot of data movement and minimal computation should
be able to saturate the memory bandwidth without prefetching.
In this case, prefetching will not be useful. However, for



Fig. 12. Performance counter values for cache traffic in repeated SAXPY
inner loop

problems which are memory-bound but cannot saturate the
memory bandwidth, prefetching is generally useful.

We also found that tuning performance parameters is quite
time-consuming. Tuning prefetching is especially difficult, as
it is highly dependent on the workload. With software prefetch-
ing, the programmer must painstakingly profile how much and
how far ahead to prefetch. Tuning hardware prefetching is
also time-consuming, except the work must be done by the
hardware designer, not the software programmer. In a way,
this may be more difficult. For general-purpose hardware,
the designer will not be able to predict all of the different
workloads that users will run. This suggests the need for a
more adaptive hardware prefetcher, which can adjust its own
parameters to fit the currently running workload.

Finally, we learned that when investigating features for
reducing conflict misses, it is important to ensure that the
features are not simply compensating for problems with the
replacement policy. A pseudo-LRU replacement policy is not
terribly difficult to implement (though somewhat expensive in
terms of added hardware) but confers significant benefits over
random replacement.

Fig. 13. New Hwacha results


