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Abstract—In-memory key-value stores are an important part
of many datacenter applications. Web applications frequently
use such software to cache the results of frequently recurring
computations. Reducing the latency of key-value lookups will
therefore go a long way towards improving total request latency.
As a significant portion of the processing time for a request is
due to the OS and application overhead, we believe bypassing
the software layer and servicing these requests from a hardware
accelerator will deliver significant benefits. In addition, previous
studies have determined that the nature of key-value store
workloads makes it feasible to implement such an accelerator
as a small SRAM cache, instead of serving responses from
DRAM as previous accelerators have done. In this study, we
implement a hardware accelerator for the Memcached key-value
store on a Xilinx ZC706 development board and characterize
its performance. Our initial evaluation with a realistic workload
shows a 10x improvement in latency for 40% of requests without
adding significant overhead to the remaining requests.

I. INTRODUCTION

Key-Value stores are used in many important websites. For
example, Dynamo is used at Amazon [1]; Redis is used at
Github, Digg, and Blizzard Interactive [2]; and Memcached
is used at Facebook, LinkedIn and Twitter [3], [4]. These
applications store Key-Value pairs and commonly function as a
cache for frequently recurring computations, such as complex
SQL queries. Therefore, tuning the performance of these
storage systems is essential for building efficient large-scale
web services. Because latency is critical for these applications,
many optimizations have been explored that aim to reduce the
response latency of these systems.

When analyzing the performance of large kv stores, we
see that there are many different sources of latency in a
GET request, but not all contributions are equal. One study
of a typical datacenter application, summarized in Figure 1,
indicates that software at the endpoint accounts for 88% of the
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Fig. 1. Components of memcached request latency in a datacenter

total request latency [5]. Thus, if we can improve the latency
of a single node, we can make substantial improvements to the
total request latency in a memcached cluster. This is the focus
of this paper.

We propose incorporating a dedicated cache on each node
whose sole job is to serve memcached GET requests. This
approach is effective due to the high skew that is present
in the distribution of keys in realistic workloads, where a
small number of keys make up most of the requests seen
at a single node. GET requests are simple enough to handle
with specialized hardware, allowing us to bypass the software
networking stack entirely. Our preliminary evaluation shows
that we reduce latency by a factor of ten for keys served from
the accelerator when compared with a software implementation
on the same board.

II. RELATED WORK

Others have advocated and explored reducing the latency of
datacenter applications, including memcached, by modifying
the software stack [6], [7]. However, our scheme aims to
remove the software altogether in the common case.

Additionally, previous efforts have accelerated memcached
using hardware. However, these approaches either limit the
functionality of memcached by attempting to implement all
memcached features in hardware [8] or require expensive
accesses to DRAM for each key that the accelerator serves,
increasing latency [9]. We aim to design a system that min-
imizes latency for a small number of popular keys, while
handling the remaining keys in software. Aside from some
values being returned at extremly low latencies, an external
observer should not be able to distinguish our accelerated
FPGA-based memcached nodes from memcached running on
standard server-class hardware.

III. SYSTEM OVERVIEW

Our system consists of two novel components that enable
the acceleration of memcached GET requests: a traffic manager
and a key-value store accelerator, both written in Chisel, a
hardware construction language developed at Berkeley [10].
These components are attached to a RISC-V Rocket Core
with DMA-based networking support. The traffic manager
directs incoming network traffic to the correct component
of our system. Incoming UDP packets that represent GET
requests in the memcached binary protocol are taken out of the
receive stream and handed to the key-value store accelerator
for processing. All other packets are handed off to the DMA
engine attached to Rocket for standard software handling.

When a memcached packet is handed to the accelerator, the
accelerator checks for the presence of the requested key-value
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Fig. 2. Full System Design

pair in its SRAM. If the pair is cached in the accelerator, a
memcached binary protocol GET response is constructed and
transmitted without involving the application processor. If the
pair is not found in the accelerator, the packet is forwarded to
the DMA engine for transmission to software on the Rocket
Core. Once a memcached request is handed to Rocket for
processing, it is handled as on any other system running
memcached.

The cache replacement policy used by our system to deter-
mine the set of keys placed on the accelerator is implemented
entirely in software. Thus, it can be tuned without making
significant modifications to the hardware. Additionally, the
accelerator is sufficiently general that it can be used with any
system that benefits from handling some requests directly at
the network interface card. On the other hand, generalizing the
traffic manager is left as future work. One avenue is to replace
the traffic manager with a fully-programmable I/O coprocessor,
allowing on-the-fly selection of packet filtering policies.

IV. HARDWARE

A. Key-Value Store Accelerator
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Fig. 3. Key-Value Store Accelerator

1) Lookup Pipeline: The main part of the accelerator is a
lookup pipeline, which takes keys in through an input port,
looks up the value, and streams the value out through an
output port. Each port consists of two decoupled interfaces
with ready-valid signals. The first decoupled interface sends
the length of the data to come, and the second sends the data
itself eight bits at a time.

When a key comes into the accelerator, the first thing
done is to compute a primary and secondary hash value. The
hash algorithm used is the Pearson hashing algorithm, a non-
cryptographic hashing algorithm implemented as follows.

h = array of size n
for j from 0 to n-1

h[j] = T[(x[0] + j) & 0xff]
for i from 1 to length(x) - 1

h[j] = T[h[j] ˆ x[i]]

In this algorithm, h is one byte in the final hash value, x is
the message, and T is a table containing a random permutation
of all the integers from 0 to 255. The outer loop of the
algorithm is parallelized by replicating the following hardware
n times.
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Fig. 4. Hasher

We use two different tables in order to generate two
different hash values, a primary and a secondary hash. At the
same time, we write the key into the current key memory.
When the hasher is finished, it passes the two hashes to the
key comparison unit.

The key comparison unit uses the hash value to index into
the key memory. The key memory reserves 256 bytes for each
key, so the starting address of a key in the memory can be
found simply by taking the hash value and shifting it to the
left by a certain number of bits. The shift amount depends
on the word size of the memory, which can be parameterized.
Assuming a word size of eight bits, the algorithm for the key
comparison unit would be as follows.

function keycompare(hash, curKeyLen)
cmpKeyLen := lenMem(hash)
if (cmpKeyLen != curKeyLen)

return false
for i from 0 to (curKeyLen - 1)

allInd = (hash << 8) | i
if (curKeyMem(i) != allKeyMem(allInd))

return false
return true

Note that there is also a memory to store the lengths of
keys. The key comparison unit will check the primary hash
value and, if that does not match, the secondary hash value. If
one of the two possible keys matches, the correct hash value
is then passed to the value memory unit. The value memory
will then look up the starting address and length of the value
from a table, and begin streaming out the value through the
output interface. If neither of the two keys match, the value
memory unit will send a zero through the length interface to
indicate that no value was found.

The interfaces between subsequent stages (hashing, key
comparison, and value streaming) are constructed so that all
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three stages can operate simultaneously. Tags are used to allow
external hardware to determine which response corresponds to
which key. The one complication in decoupling the pipeline
stages is that both the hasher/writer stage and the key com-
parison stage access the current key memory. This problem is
solved by doubling the key memory. The writer writes to one
half of the memory while the key comparison unit reads from
the other half. When both units finish processing a key, they
switch halves so that the key comparison unit reads the key
which was just written and the writer overwrites the key which
was just processed.

2) Control through RoCC interface: The accelerator is con-
figured from software through the RoCC command interface.
To place a key into the accelerator, the lookup pipeline must
first be placed into write mode. In this mode, the hasher will
no longer take keys from the traffic manager, but will instead
take the key from the memory handler, which reads in the keys
from DRAM through the RoCC memory interface.

Once the key is read in and hash values computed, the key
compare unit will then determine which hash slot the key can
be placed in. A key can be placed in a hash slot if the slot is
empty, the key in the slot is the same as the key to be placed,
or the key has a lower weight than the key being placed. The
weight is simply a saturating count of how frequently the key
is accessed. The count can be reset from software so that keys
which were once popular but no longer are can be evicted.

Once the lookup pipeline has determined where the new
key can be placed, the controller will instruct the memory
handler to read the value through the RoCC memory interface
and write it into the value memory.

B. Traffic Manager

Sitting between the key-value store accelerator and the NIC
is the traffic manager, which routes network packets between
the accelerator and the CPU.

Packets from the network card are first written into the
main buffer. At the same time, the controller inspects the
packet header to determine if the packet is an IPv4 UDP packet
and that the payload is a Memcached binary GET request. A
memcached GET request packet is broken into fields as shown
in Figure 6.

The first eight octets are a pseudo-TCP header which is
used by memcached to match requests and responses. We only
ever use single-packet messages, so the sequence number is

0 1 2 3
0 Request ID Sequence Num
4 # Datagrams 0x00 0x00
8 0x80 0x00 Key Length

12 Zeros
16 Total Body Length
20

Zeros24
28
32 Key
...

Fig. 6. Memcached Binary Protocol GET Request

0 1 2 3
0 Request ID Sequence Num
4 # Datagrams 0x00 0x00
8 0x81 0x00 0x0000

12 0x04 Zeros
16 Total Body Length
20 Zeros24
28 0x00000001
32 0xdeadbeef
36 Value
...

Fig. 7. Memcached Binary Protocol GET Response

always zero and the number of datagrams is always one. The
controller saves the request ID (as well as MAC addresses
from the ethernet header, IP addresses from the IP header, and
port numbers from the UDP header) to use in constructing
the response packet. Bytes 8 - 31 are the memcached binary
protocol headers. The first byte is a magic value 0x80, which
indicates that the packet is a memcached request (as opposed
to a response). The second byte is an opcode 0x00, indicating
that it is a GET request. The other important fields are the key
length and total body length, which should be the same. Bytes
32 and on are the key.

If the packet does not contain a GET request, the packet is
sent on to the DMA engine, which will transfer the packet
to the CPU. If it is a GET packet, the key is sent to the
accelerator and the packet is moved from the main buffer to a
defer buffer, allowing the traffic manager to process subsequent
packets without waiting for the result to come back from the
accelerator.

If a result does come back, the deferred packet is removed
from the buffer and the responder unit constructs a response
by adding the necessary headers and computing the IP and
UDP checksums. The response is then sent back to the NIC.
A memcached binary GET response should be as shown in
Figure 7.

As before, the first eight bytes are a pseudo-TCP header.
The request ID here should be the same as the request ID of the
corresponding request. The binary protocol header starts with
the magic number 0x81, indicating a response, followed by
the opcode 0x00, indicating a response to a GET request. The
response body begins with a 4-byte extras section containing
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Fig. 8. DMA engine: Transmission channel

the bytes DEADBEEF. The total body length should thus be
set to the length of the value plus four. The rest of the body
is the value.

If a zero-length result is returned, indicating that the key
was not found in the accelerator, the deferred packet is sent
on to the DMA engine.

The traffic manager also takes outbound packets from the
DMA engine. An arbiter is used to interleave transmission
of these packets with transmission of memcached response
packets from the accelerator.

C. DMA Engine

Both the baseline and accelerated systems feature a direct
memory access (DMA) engine for transferring Ethernet frames
to and from main memory. A significant increase in I/O
performance is realized by minimizing the involvement of the
processor, exploiting a wider memory interface for improved
throughput, and avoiding pollution of the inner caches. The
DMA engine attaches directly to the media access controller of
the NIC in the baseline, and alternatively to the traffic manager
with the accelerator present.

The DMA engine comprises two simplex channels dedi-
cated to receive (Rx) and transmit (Tx). A channel is internally
structured as a pair of ingress and egress units, respectively
designated the front-end and back-end, which coordinate by
ready/valid handshaking to exchange blocks of data. Each end
fully encapsulates the protocol-specific logic for its external
interface and presents a generic FIFO abstraction at the other
terminal, enabling units of different types to connect and
interact in a consistent modular fashion. The design is thus
intended to accommodate a variety of peripheral interfaces
through interchangeable sets of front-ends and back-ends.

The memory units do not directly interface with the DRAM
controller but instead communicate with the L2 coherence
agent through the TileLink protocol, the primary on-chip
system interconnect. This layer normally mediates access to
the shared last-level cache, if present, or to main memory
otherwise, as in this case. Closer integration with the cache
hierarchy, although perhaps unconventional for peripheral I/O,
simplifies cache coherence in a system-on-chip environment:
The DMA engine is treated as simply another client like
a processor tile. By marking DMA requests as uncached,
the coherence agent ensures that all necessary cache flushes
and invalidations occur on behalf of the DMA engine, which
conveniently avoids interaction with coherence traffic.
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Fig. 9. DMA engine: Reception channel

Each TileLink transaction delivers a 64-byte cache line and
supports access to the complete 32-bit physical address space,
thus eliminating the need for bounce buffers. The exact widths
of TileLink addresses and data are configurable system-level
parameters.

One possibility briefly considered but left unpursued is
adding an arbiter port to the L1 data cache for DMA op-
erations. Since a TLB already resides in the L1 cache, this
would naturally facilitate zero-copy transfers into user-mode
virtual address spaces without requiring page fixing or pinning
of physical memory. The eight-fold reduction in throughput
would be somewhat compensated by a significant improvement
in latency, possibly an acceptable trade-off given the narrow
I/O width at the peripheral end. The overriding concern,
however, is cache pollution by relatively large Ethernet frames.

1) Transmit: Figure 8 illustrates the Tx channel architec-
ture. The descriptor ring lists pending buffers to transmit. To
initiate a transfer, the processor enqueues a buffer descriptor
with the base address and count, which the controller then
inserts into ring at the slot denoted by an automatically
incremented write pointer. A read pointer indicates which
buffer is being consumed by the channel.

Once the transfer completes, the controller raises an in-
terrupt request. Independent of the DMA engine, the software
maintains a pointer to the earliest descriptor yet to be acknowl-
edged, initialized with the read pointer after reset. The interval
from this pointer to the current read pointer, non-inclusive,
identifies the set of buffers that may be safely deallocated.

A shallow two-entry queue decouples the front-end from
the back-end. This enables the front-end to prefetch the next
cache line simultaneously as the back-end streams the previous
line. The front-end currently serializes TileLink transactions;
although multiple outstanding requests could be pipelined
as addresses can be generated immediately, managing the
potential out-of-order arrival of responses costs extra buffer
space and control logic. In practice, this optimization proves
to be largely unneeded. After the penalty of initial load, the
throughput provided by TileLink adequately saturates the back-
end to completely hide the memory latency of 30 to 50 cycles.

2) Receive: The Rx channel, depicted in Figure 9, pos-
sesses an architecture broadly similar to its Tx counterpart. The
descriptor ring holds the base addresses of empty buffers which
have been allocated beforehand and await to be filled with
incoming frames. A write pointer reports the next available slot
and automatically advances as descriptors are enqueued by the
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processor. For simplicity, the buffers are assumed to extend to
the maximum length of an IEEE 802.3 Ethernet frame without
the 802.1Q tag (1514 octets).

An internal current pointer tracks which buffer is presently
active. Upon completion of a frame, the final count is stored
in a separate ring at the slot indexed by the current pointer,
while the controller raises an interrupt request. Counts are
dequeued according to a read pointer, whose value can be used
to associate each count with the original buffer. Note that the
read pointer cannot overtake the current pointer, which itself
cannot overtake the write pointer. Since channel activity stalls
when the descriptor ring becomes empty, the processor must
resupply buffers at a rate equal to consumption.

Due to the shorter latency of store operations, the Rx front-
end and back-end do not need to be decoupled to the same
degree as with the Tx channel. The back-end can perform the
two-way TileLink acknowledgement (grant and finish) while
the front-end populates the subsequent cache line.

The existing TileLink interface omits byte-granular write
masks, thus complicating the handling of partial writes. Con-
sequently, receive buffers must be aligned at a cache line
boundary and, to prevent clobbering, cannot share cache lines
with other data. As the kernel network stack also expects four-
byte alignment of the IPv4 header, frames are written with a
two-byte initial padding. These restrictions could be averted
by resorting to read-modify-write operations for the first and
last cache lines, but this would adversely impact latency and
expose the DMA engine to coherence probes for only minor
benefits in programming convenience.

V. INFRASTRUCTURE

A. Pre-existing Components

Our system is built on a Xilinx ZC706 FPGA Evaluation
platform. This board contains a Xilinx Zynq-7000 XC7Z045-
2FFG900C AP SoC, with two ARM Cortex-A9 MPCore
application processors attached to programmable logic. Our
full-system design runs on the programmable logic, with the
ARM cores used only for bootstrapping and non-network I/O
purposes. In order to create an ethernet interface accessible to
the programmable logic, we take advantage of the ZC706’s
SFP cage with a Brocade 1Gbit Copper SFP Transceiver.

As our application processor, we use the open-source 64-
bit RISC-V Rocket Core. The Rocket core is a 6-stage, single-
issue, in-order pipeline running at 50MHz on the FPGA fabric.
The Rocket pipeline is elaborated in Figure 10. This core is
supported by Rocket-Chip, which contains uncore components
such as caches and coherence agents, along with the host-
machine interface (HTIF) [11]. On our ZC706 board, Rocket
has 512MiB of DRAM, a 16KiB instruction cache, and a
32KiB data cache, while the HTIF bus supports block devices,
a console, and externally initiated DMA transfers into DRAM.

FIFO I/F MAC PCS PMA

To Rocket To SFP

Network Interface Card

Fig. 11. ZC706-Compatible NIC from Xilinx IP

B. Custom Components

For our base system, we used the standard, publicly-
available distribution of the RISC-V Rocket Core for Xilinx
Zynq FPGAs. As of the start of our project, this distribution
contained only a Rocket Core on the FPGA fabric, without
I/O peripherals. As a result, during our bringup phase we built
many components from scratch that other projects take for
granted. We hope that the presence of these components on the
open-source RISC-V platform will accelerate future research
efforts. The following sections describe our experiences bring-
ing up various hardware and software components that support
our accelerator.

1) SFP Bring-up: In order to give the programmable logic
access to a network, we use the small form-factor pluggable
(SFP) cage on the ZC706 board to house a one gigabit SFP
transceiver. Although the ZC706 contains an existing Ethernet
PHY, it is tied to the ARM cores on the Zynq-7000 SoC, and
attaching it to the programmable logic is not feasible without
introducing significant latency overheads.

The SFP requires a low-jitter 125MHz clock for operation.
This is provided by an on-board Si5324 jitter attenuator chip.
This chip does not default to 125MHz and instead must be
programmed over I2C [12]. Since the I2C bus is exposed only
to the ARM cores on the Zynq SoC, bringup for this clock is
the responsibilty of a Linux driver running on the ARM core.

2) Building the Network Interface Card: Our system uses
Xilinx IP included in Vivado 2014.2 in order to construct a
1Gbps Network Interface Card. The first of these components
is the LogiCORE IP Ethernet 1000Base-X PCS/PMA or SG-
MII core [13]. The PCS/PMA core implements the 1000Base-
X Physical Coding Sublayer and Physical Medium Attachment
standards, as described in IEEE 802.3-2008. The core inte-
grates a device specific transceiver that is compatible with our
Brocade SFP Module. On the client side, the PCS/PMA core
provides an MDIO interface for control and a GMII interface
for data.

The second component of the NIC is the Xilinx LogiCORE
IP Tri-Mode Ethernet MAC [14]. The MAC implements the
Ethernet Medium Access Controller protocol as defined in
the IEEE 802.3-2008 specification. The MAC handles ether-
net framing protocols and error detection. It attaches to the
PCS/PMA IP through a GMII interface for data and an MDIO
interface for control. On the CPU-side, the core exposes AXI4-
Stream interfaces for transmit and receive and an AXI4-Lite
Interface for management [15]. Both of these interfaces attach
to custom hardware interfaces added to the Rocket core.



Resource w/o A+TM w/A+TM
Slice LUTs 17.09% 21.79%

Slice Registers 6.18% 8.01%
Memory 21.65% 63.85%

Fig. 12. ZC706 System Utilization

C. Bootstrapping the System

1) ARM Core: When power is first supplied to the board,
our full-system design, containing Rocket along with the traffic
manager, accelerator, DMA engine, and NIC is pushed onto the
programmable logic in the Zynq SoC. Next, a copy of Linux
with support for SFP clock bringup is booted on the ARM
cores in the Zynq SoC. The fesvr-zynq application then
executes on the ARM core. This program copies a specified
RISC-V binary into the Rocket Core’s DRAM over the HTIF
bus and resets the Rocket Core. In our case, we supply a
vmlinux binary containing the RISC-V Linux kernel, along
with a root filesystem.

2) Rocket Core: From this point forward, the Rocket Core
executes independently of the ARM core. The ARM core
now handles only non-network I/O for the Rocket core over
the HTIF bus. Upon boot, the Rocket core uses our custom
TEMAC driver to bring up the NIC, using custom control
registers for configuration of the NIC and DMA engine.

D. Future Infrastructure Work

Although not relevant to system correctness, we do not
adhere to the RISC-V vision for I/O as defined in the upcoming
privileged specification. For reference, the resource utilization
of our full system is noted in Figure 12.

VI. SOFTWARE

A. Programming Model

The key-value store accelerator is controlled through the
RISC-V RoCC co-processor interface. This interface allows
the CPU to interact with the accelerator by sending it custom
instructions. A RoCC instruction is encoded as described in
Figure 13.

Fig. 13. RISC-V RoCC Instruction Encoding

We use only the custom0 instruction, so the opcode
is always 0001011. The rd, rs1, and rs2 fields refer to
the address of the destination and first and second operand
registers, respectively. The xd, xs1, and xs2 bits are set if the
register is actually used by the instruction, and clear otherwise.
The funct7 section of the instruction is essentially a secondary
opcode. Our accelerator specifies seven instructions, which are
distinguished by the value of the funct7 field.

funct7 name xd, xs1, xs2
0 Switch Mode 000
1 Delete Key 111
2 Reserve Key 111
3 Associate Address 011
4 Associate Length 011
5 Write Value 011
6 Reset Counts 000

The “switch mode” instruction changes the accelerator to
either write mode or read mode, depending on the value of
the rs1 field. Read mode is rs1=0; write mode is rs1=1. The
accelerator must be in read mode in order to serve responses
to the traffic manager, but must be in write mode in order to
run any of the other instructions.

The “delete key” instruction removes a key-value associa-
tion from the accelerator. For this instruction, the first source
register contains the starting address of the key in memory,
and the second source register contains the length of the key.
The hash value that the key was deleted from is placed in
the destination register. If the key was not present in the
accelerator, the special value 0xffffff is placed in the
destination register.

The “reserve key” instruction adds a key to the accelerator.
As in the “delete key” instruction, the first source register is
the starting address of the key. The second register serves
a dual function. The lowest eight bits of the register value
are treated as the length of the key (keys are limited to 255
bytes in size), and the six bits above are treated as the weight.
The reserve key instruction will replace an existing key if the
weight provided is greater than the access count stored for that
key in the accelerator. The hash value at which the key was
placed is returned in the destination register. If the accelerator
cannot find a place to put the key, the special value 0xffffff is
placed in the destination register.

The “associate address” instruction associates an address in
the value RAM with a hash value. The hash value is placed in
the first source register and the address is placed in the second
source register.

The “associate length” instruction associates the length of
a value with a hash value. The first source register holds the
hash value and the second source register holds the length.

The “write value” instruction transfers a value from the
processor’s memory to the accelerator’s value memory. The
first source register holds the hash value and the second source
register holds the starting address in the CPU memory. The
starting destination address and length must be set earlier using
the ‘associate address” and ”associate length” instructions.
The accelerator makes no attempt to stop one value from
overwriting another. Software running on the CPU performs
slab allocation of the value SRAM to ensure that the values
do not overlap.

The “reset counts” instructions reset the access counts for
all hash values to zero. The access counts are saturating 6-bit
counters. Every time the key at a given hash value is accessed,
the counter is incremented (unless it is already saturated).
Resetting the counts to zero every once in a while ensures
that old keys which were once popular but no longer are can
be evicted from the accelerator.



To set a key on the accelerator and then activate the
accelerator, we would write a program like the following
pseudocode.

function setKey(key, value, weight)
// set to write mode
setMode(1)
len_weight = len(key) | (weight << 8)
hash = reserveKey(key, len_weight)
if hash == 0xffffff then

raise exception
// allocate some space on the value SRAM
// (done in software)
addr = sramAlloc(len(value))
// write the value to the accelerator
assocAddr(hash, addr)
assocLen(hash, len(value))
writeVal(hash, value)
// switch back to read mode
setMode(0)

B. Cache Policy

In our system, the software decides which keys to place in
the accelerator. There are many constraints that this decision
must satisfy. First of all, the key itself should popular in the
present and future and not just based on past requests. Another
more important constaint is that the decision must be made
quickly. Otherwise, cache handling will become the bottleneck.
Lastly, the software can only push keys to the accelerator every
so often, since the accelerator cannot serve requests while in
write mode.

In order to find the hot keys and make quick decisions, we
randomly sample each key with probability 1

8 . This allows us,
on average, to get keys that appear frequently while ignoring
many of the keys that only get called a few times. Since the
distribution of requests has a long tail, the sampling mitigates
any effects that this tail might have.

Since we would like to avoid setting the accelerator to write
mode too often, we batch key pushes. This means that we only
push keys after we accumulate 100 distinct keys.

The accelerator stores keys as a two-way set-associative
cache. Thus, there might be a collision between the key being
inserted and a key already set in the cache. To determine
whether to evict the previously set key or reject the new key,
the accelerator compares the count stored on the accelerator
with the count passed in through the reserve key instruction.
After each batch insertion, the software resets the hardware
counts in order to avoid looking at outdated information.

VII. EVALUATION

Our preliminary evaluation demonstrates that this approach
shows a lot of promise. However, investigation into better
replacement policies will likely yield improvements in system
performance.

A. Methodology

In our experimental setup, we generated key-value pairs,
placed them in memcached, and performed a GET request
for each key. We then measured the latencies for a series
of GET requests generated from a predetermined probability
distribution. These distributions include one checking only

Fig. 14. Latency of GET requests when only getting 1 key
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Fig. 15. Latency of GET requests when keys follow a uniform distribution

a single key, a uniform distribution, a normal distribution,
a Pareto distribution, and a distribution based on the ETC
workload from a Facebook study [16].

B. Results

In our first benchmark, we compared the latency of our
accelerator to the latency of software memcached in respond-
ing to requests for a single key. For this experiment, we set a
single key on the accelerator and in the unmodified memcached
software. We then issued repeated GET requests with small
random delays in between and recorded the latency of each
request.

As we see from Figure 14, there is approximately an
order of magnitude improvement between a request served by
the accelerator and a request served by memcached software
running on the CPU.

After the single-key benchmark, we tested a series of
requests chosen according to a uniform distribution of keys.
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Fig. 16. Latency of GET requests when keys follow a normal distribution
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Fig. 17. Latency of GET requests when keys follow a pareto distribution

In Figure 15, we see that, for this distribution, the
hardware-accelerated implementation performs worse than
than the pure software implementation. The driving factor
behind the poor performance is the overhead incurred in the
traffic manager when checking whether each key is in the ac-
celerator. Since all requests on the accelerated implementation
must pay this penalty, we expect the accelerated implementa-
tion to perform poorly for key distributions that are not heavily
skewed. The results for a normal distribution (Figure 16) show
similarly poor performance for the accelerator compared to the
software implementation.

For skewed distributions such as a Pareto distribution
(Figure 17), we see a drastic improvement in the accelerated
implementation over the pure-software implementation. In this
test, the most popular keys are placed on the accelerator and
are not easily evicted. For the these keys, the 10x latency
improvement from serving from the accelerator more than
makes up for the latency penalty incurred in the traffic man-
ager. However, only about 11% of the requests benefit from
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Fig. 18. Latency of GET requests when keys follow the Facebook ETC
distribution

acceleration. Requests for keys not placed on the accelerator
still have higher latency than in the software implementation.

Finally, we used the Facebook ETC distribution [16] in
order to see how our system would fare against a more realistic
workload. In Figure 18, we see that this is a very promising
start. 40 percent of all requests get a factor-of-ten improvement
in latency. However, the poor performance in the non-skewed
distributions suggests that improvements can be made in our
caching policy to enhance system performance.

VIII. FUTURE WORK

Beyond the hardware being functionally complete, the next
step will be to raise the throughput of the I/O subsystem
closer to wire speed. The extensive buffering within the traffic
manager suggests a natural widening of the stream interface
servicing the DMA engine and accelerator. Other RTL opti-
mizations can eliminate dead cycles in the state machines. The
traffic manager, accelerator, and DMA engine could also be
situated in a faster clock domain, ideally at 125MHz alongside
the MAC, rather than be constrained to the relatively slow
core frequency of 50MHz. These components are already
decoupled from the rest of the design through ready/valid
handshake schemes, which streamlines the task of inserting
asynchronous FIFOs and synchronizers at the crossings.

As for software, there is potential to improve the hit rate
of the accelerator by tuning the cache replacement policy
with a more accurate heavy hitters algorithm and possibly
workload-aware speculation. Fragmentation of the value cache
could become an issue with a larger dataset, which might be
mitigated by more sophisticated allocation strategies than a
simple linear scan.

In the long term, viability as a commodity datacenter
appliance rests particularly on replacing fixed-function blocks
with a programmable substrate, without compromising latency.
Much greater efficiency is attainable with a VLSI implemen-
tation of the accelerator, but an appropriate degree of general-
ization and reusability is necessary to justify its expense.



The memcached-specific logic for classifying requests and
constructing responses is isolated entirely within the traf-
fic manager. By exchanging the traffic manager for a pro-
grammable I/O co-processor, it becomes possible to perform
arbitrary packet filtering and to support more complex network
processing, such as TCP offload. This also permits the acceler-
ator to handle other varieties of key-value stores. Futhermore,
examining a broader set of latency-sensitive applications for
alternative uses of scratchpad memory attached to the NIC
might lead to a more flexible design for the accelerator.

IX. CONCLUSION

In this paper, we described a hardware accelerator for the
Memcached key-value store which we developed and evaluated
on the ZC706 FPGA development board. By storing keys and
values in a dedicated SRAM cache and serving responses
directly to the NIC without involving the CPU, our accelerator
delivers an order of magnitude improvement in latency. We
furthermore showed that our accelerator can store a number
of key-value pairs sufficient to serve 40% of the requests in a
real-world workload.
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