
Nephele: A Simple Solution for Data Replication

João Carreira, Howard Mao, Nathan Pemberton

May 11, 2015

Abstract

In large-scale distributed systems, failures are the norm
rather than the exception. To cope with hardware and
software failures, developers mostly make use of two
main techniques: persisting data to a non-volatile stor-
age device such as a hard drive or storing data in a dis-
tributed storage system such as a DBMS or key-value
store. While the first approach is slow and leaves the
program’s progress disk-bound, the second approach
requires the usage of complex APIs that require serial-
ization of user’s data structures.

To solve this problem, we built Nephele, a framework
that provides efficient replication of in-memory data
structures through a simple API. Nephele replicates a
program’s data to a remote node through RDMA pro-
viding snapshots of program’s data with latency on the
order of a few microseconds. The framework provides a
transactional interface to users that guarantees atom-
icity and durability even in the face of failures.

Nephele consists of two layers: a transactional layer
for recoverable virtual memory (RVM) and a remote
memory storage layer. The user-facing transaction
layer provides an API consisting of 15 methods and
is responsible for detecting changes and replicating
changes at commit time. The remote memory storage
layer is responsible for storing user’s data in a remote
node over RDMA. For this layer, we have implemented
two backends: one using a custom RDMA protocol
with a custom server, and one using RAMCloud, an
RDMA-optimized key-value store.

To demonstrate the flexibility and performance of
our system, we applied our framework to three appli-
cations: a genomic assembly program, an in-memory
file system, and a vector-matrix multiplication appli-
cation. We show that our framework provides data
replication efficiently through a simple to use API.

1 Introduction

As the number of nodes in distributed systems in-
creases, failures become the rule, not the exception.
Because of this, it is important to be able to recover

from crashes quickly. In addition, the application
should not be made significantly more complicated by
the addition of recovery code.

While it would be overly ambitious to try and solve
this entire goal, we propose a tool that could simplify
such a solution by providing the ability to replicate
the application’s working state to another failure do-
main. In this report, we present an implementation of
Recoverable Virtual Memory (RVM), an API that al-
lows the programmer to easily add state checkpointing
and recovery to their application. RVM operates by
detecting modifications to recoverable memory regions
and replicating the memory to a remote node.

The proliferation of high-performance RDMA and
future disaggregated memory systems offer an oppor-
tunity to perform this replication efficiently. For ex-
ample, the FireBox warehouse-scale computer (an AS-
PIRE lab project) will have a central pool of universally
accessible DRAM and non-volatile memory. Currently
there is no FireBox hardware to experiment with, but
we do have an infiniband based cluster (Firebox-0). So
far, we have implemented two backends, one using the
Infiniband RDMA API and one using the RAMCloud
key-value store.

1.1 Current Solutions

The need to preserve critical data in the event of a
hardware failure is not new. There are a number of
popular methods of addressing this problem. One is
to checkpoint the entire operating system process us-
ing a tool like the Berkeley Lab Checkpoint Restart
library [4] or Condor [1]). Process checkpointing is
appealing because it requires little to no changes in
the application. For this convenience, the technique
sacrifices efficiency. All data must be checkpointed,
not just the critical state, and operating system state
must be quiesced. A common practice to avoid avoid
copying the entire program state is to manually seri-
alize critical data structures and write them to a file.
While, in theory, this technique copies the minimum
amount of data, in practice it can be difficult to iden-
tify which state has actually changed. The user is
forced to pessimistically replicate most critical state

1

rvm cfg [create/destroy]()
Initialize the system
and recover memory if needed

rvm [alloc/free]()
Allocate a region
of recoverable memory

rvm txn [start/commit]()
Mark a point of
consistency in the program

rvm [set/get] usr data()
Register a pointer
to your state.

Table 1: RVM API

on each checkpoint. Manual serialization also leads
to significant increases in code complexity. Each data
structure must have two definitions, one for on-disk
and the other for in-memory. Maintaining this serial-
ization code can be time-consuming and error-prone.
Finally, databases are commonly used to replicate crit-
ical state. Databases provide clean transactional se-
mantics that can be appealing for high-availability ap-
plications. Databases, however, often have a complex
interface that requires manual serialization. They also
provide more features than are required for state repli-
cation, which leads to poor performance.

1.2 RVM Interface

The RVM interface is designed to be as unobtrusive as
possible. Users should be able to preserve just their
critical state without worrying about re-writing point-
ers or packing data into a file. To do this our frame-
work requires only that the user identify which mem-
ory is considered critical, and identify points of consis-
tency in their code. By marking a point of consistency
the user certifies that, if the program we’re to restart
with the critical memory in the current state, the pro-
gram would be able to continue execution. Critical
state is identified by allocating it from a special recov-
erable malloc function and consistency points are iden-
tified through a transactional interface. Users may also
save a special user data pointer that survives failures.
This pointer typically stores a state structure that
can address the recoverable state in an application-
dependent fashion. Table 1 lists the entire required
API.

In practice, of course, it is not this simple. Code
must be written in such a way that recovery is possi-
ble. In addition, while critical local state is preserved,
external state (like open files or sockets) is not. RVM is
intended as a low-level library that can be exploited by
more full-featured recovery libraries. An analogous re-
lationship can be seen in the GASNet [2] library which
can be used directly, but is really intended as a low-
level interface for global address space languages.

SERVER
CLIENT

User Code
Application logic

RVM Library
Memory management and

detection of changes
Remote Memory Interface
Memory replication and atomicity

Block Store
Memory blocks exposed to RDMA

Atomic Copy
Atomic updates to block store

Two-
sided

On
e-s

ide
d

Figure 1: RVM lasagna diagram

2 Design

The library consists of two main layers on the client
side. An upper layer to implement the RVM-specific
logic and a lower-layer remote memory (RMEM) back-
end to implement low-level transport and atomicity.
This relationship is described in Figure 1. This mod-
ularization allows for a number of different backends
to be tried independently of user code and the RVM
layer. This enhances portability and simplifies future
efforts to improve performance or semantics.

2.1 The RVM API

The RVM layer is responsible for implementing the cus-
tom allocator and identifying changes to memory. It is
also responsible for tracking commit points.

2.1.1 The Block Table

The RVM layer thinks in terms of blocks, fixed-sized
regions of memory that are persisted atomically. Most
functionality is based around the block table, a persis-
tent data structure that keeps track of each allocated
block in the system. This table is replicated using
the same mechanism as any other recoverable memory.
Like a filesystem master boot record, the first page of
the block table is always stored with a constant identi-
fier in the RMEM layer. After that, the block table is
self-describing and can be recovered using the mecha-
nisms described below.

Each entry in the block table contains a local address
where the active block lives on the client and a remote
identifier that can be used to identify the block in the
RMEM layer.

2.1.2 Initialization and Recovery Procedure

When rvm_cfg_create() is called the first time, it
initializes the block table to an empty state and
persists it in the RMEM layer. When recovering,
rvm_cfg_create() fetches the first block of the block
table from the RMEM layer. The block table is walked
from start to finish, fetching each block as it goes.

2

Even if the block table takes up multiple blocks, each
one is fetched in order, ensuring that all data can be
found eventually. When RVM fetches a remote block,
it must ensure that it is loaded to the same address it
was at before failure, otherwise pointers in the data
would no longer be valid. The original address is
read from the block table and then allocated using the
mmap() system call. To ensure that these addresses
are always available, RVM requires that any OS ad-
dress space layout randomization be disabled, and that
rvm_cfg_create() be called before any other local al-
locations.

2.1.3 Allocation

To ensure that memory is recoverable, the user must
allocate it using a special rvm_alloc() function. The
rvm_alloc() function allocates memory both locally
and on the remote node. Any modifications to the local
pages allocated by rvm_alloc() are automatically de-
tected and copied to the remote node at commit time.
Detection is achieved through the use of mprotect(), a
Linux system call that can be used to make the appli-
cation take an interrupt whenever a page is written.
Our custom interrupt handler then marks the page as
changed, removes the memory protection and returns.
This means that RVM needs to be involved only in the
first modification to a page.

2.1.4 Marking a Point of Consistency

The user is required to identify points in their code
where the state of recoverable memory is considered
c̈onsistenẗ. This means that recovery is possible from
that particular state. rvm_txn_commit() can be called
at these points to ensure that memory is atomically
persisted. Upon entering rvm_txn_commit(), RVM
goes through the list of changed pages and copies them
to a shadow page in the RMEM layer. This ensures
that a consistent version of memory is always available,
even if the client crashes during checkpointing. When
all the pages have been copied, an atomic_commit()

function (provided by the RMEM layer) is called to
persist the changes.

2.2 The Remote Memory Layer

Underlying the RVM API is the remote memory
(RMEM) layer, which provides the basic operations
that RVM uses to communicate with the backing
data store. The essential operations in the RMEM
layer are malloc(), free(), put(), get(), and
atomic commit().

The malloc() function allocates memory in the
backing store. The function arguments include the
number of bytes to allocate as well as a unique tag

that is associated with that memory region. If the
tag has not already been taken, malloc() allocates a
new memory region and returns the starting address.
If a memory region with that tag already exists, the
starting address of the previously allocated region is
returned.

The free() function takes a tag as its argument and
frees the memory region associated with that tag.

There are also multi malloc() and multi free()

functions which allocate and free multiple memory
blocks. Depending on the backend, these functions
might coalesce malloc() and free() requests in order
to decrease the number of round trips to the backing
store.

The put() and get() functions copy data to and
from the backing store, respectively. These operations
are not atomic, so the RVM layer always performs puts
and gets onto a shadow page and then copies the data
to the real page using atomic commit().

As mentioned before, atomic commit() takes an ar-
ray of source tags and an array of destination tags.
It instructs the server to copy the data in the source
memory regions to the destination regions. This copy-
ing is done atomically, so there is no danger of only
a portion of the pages being copied due to the client
crashing.

2.3 Infiniband Backend

Our primary backend uses Infiniband Remote Direct
Memory Access (RDMA) to talk to a server manag-
ing a large pool of memory. At startup, the remote
memory server maps in a large block of system mem-
ory. The server then listens for connections over the
Infiniband fabric. When a client connects, the server
pins the memory in the page table and registers it with
the infiniband drivers. Registering with the infiniband
drivers provides a local key and a remote key. The
server transmits the remote key and starting address to
the client. This allows the client to perform one-sided
RDMA operations to the remote memory without the
server’s mediation.

The put() and get() commands are implemented
using one-sided RDMA writes and reads. The other
commands are implemented using two-sided sends and
receives. For these commands, the client and server
each allocate two message structs: one for sends, and
one for receives. In a two-sided transmission, the re-
cipient first posts a receive request to the Infiniband
driver. This receive request specifies the local key and
address of the receive struct. When the sender posts
a corresponding send request using the local key and
address of its send struct, the infiniband drivers copy
the data from the sender’s send struct to the recipi-
ent’s receive struct and notify sender and recipient of

3

Application

RVM

IB Backend

RMEM Server
Memory Pool

RDMA Read/Write

Control Messages

Figure 2: IB Backend Architecture

the operation.

2.3.1 Allocation

The malloc() operation is implemented by sending an
ALLOC request to the server. When it receives this
request, the server will allocate a block of memory form
the memory pool and mark it with the given tag. The
server then sends a MEMRESP message back to the
client containing the starting address of the allocated
block.

The free() operation is implemented by sending a
TXN FREE request to the server. A key feature of
the IB backend is that the server does not immedi-
ately perform a free operation when it receives the
TXN FREE message. Instead, it puts the free oper-
ation in a queue, which will be processed during an
atomic commit. This way, the free operation is trans-
actional. Once the server receives the message and
queues the free operation, it sends a TXN ACK mes-
sage back to the client, allowing the client to send an-
other command.

There are also MULTI ALLOC and
MULTI TXN FREE requests which can encode
up to 20 allocation or free requests (this number if
configurable at compile time). The server responds to
a MULTI ALLOC request with a MULTI MEMRESP
response, which contains an array of addresses, one for
each tag in the MULTI ALLOC request. The server
responds to MULTI TXN FREE with a TXN ACK.

2.3.2 Commit

The atomic commit() operation involves two differ-
ent message types. The first is the MULTI TXN CP
message, which instructs the server to copy a set of
source blocks to a set of destination blocks. However,
as with TXN FREE, the copy does not occur imme-
diately. When the client sends the server a TXN GO
request, the server performs all requested copies and
frees. In our failure model, we assume that the server
will not crash. So even if the client crashes after send-
ing TXN GO, the copies and frees will still be per-
formed to completion. If the client crashes before send-
ing TXN GO, all of the outstanding copy and free re-
quests will be flushed and no changes will occur.

Zookeeper

Coordinator Server

RAMCloud

RAMCloud Backend
RVM

Application

Figure 3: RAMCloud backend layer operating along
side RAMCloud.

Tag Key
1
2

“1”
“2”

Shadow/Real
Real

Shadow

Commit
Tag Key
1
2

“2”
“1”

Shadow/Real
Real

Shadow

Figure 4: Diagram of tag/key mapping transformation
during commit for a single memory region.

2.3.3 Recovery

If a client reconnects after a crash, the IB server
transmits the tag to address mappings left over
from the previous run to the client. The mappings
are transmitted to the client in groups of twenty
through TAG ADDR MAP messages. The client ac-
knowledges each TAG ADDR MAP message with a
STARTUP ACK message.

2.4 RAMCloud Backend

To investigate the performance and suitability of a key-
value store as a block device, we developed an RMEM
layer on top of RAMCloud, a low-latency key-value
store. In RAMCloud, blobs of memory (values) are
identified by keys (strings). When running, RAM-
Cloud is composed of three main executing instances:
a coordinator, a server and Zookeeper (see Figure 3).
Each server is responsible for storing and serving data
(values). The coordinator is responsible for keeping
track of all servers alive and for keeping track of where
data is stored in the system. A Zookeeper instance is
used for leader election and for storing configuration
data.

Because RAMCloud’s data is referenced by keys, this
layer keeps a map structure that associates each tag to
a key. This means that each recoverable memory region
can be uniquely identified by a key.

To provide atomicity and durability of the tag/key
mapping, this backend keeps a special entry in RAM-
Cloud with each tag-key association. This table is read
each time the software layer is started and written once
for each commit. This entry can be atomically written
with a sngle put operation.

The RMEM’s layer operations are implemented in
the following way:

4

Connect During connection the backend creates a
RAMCloud client instance that is responsible for es-
tablishing a connection to the RAMCloud server. If it
is not the first time this connection is performed, i.e.,
if the client is under recovery, the backend recovers
each tag-key mapping. Otherwise, this layer initializes
a RAMCloud table and stores an empty master entry
in the RAMCloud’s server.

Allocate During allocation, first the backend creates
a key that identifies the memory being allocated in
the RAMCloud server. Secondly, RAMCloud initial-
izes this memory.

Write To write a memory region (identified by a tag)
the backend fetches the tag’s corresponding key and
issues a put operation with that key and corresponding
data.

Read Likewise, to read a memory region the backend
issues a get operation with the tag’s corresponding key.
The data read from RAMCloud is copied to the final
destination.

Commit To perform commit, the backend con-
structs a new master entry where each tag points to
the key of the shadow memory being committed (see
Figure 4). Likewise, the tag for each of the shadow
memory regions is made to point to the key of the old
memory region (rephrase). Once this master entry is
constructed in the backend, it is written atomically to
RAMCloud.

Disconnect To disconnect, the backend clears the
main data structures (e.g., local tag-key map).

Our design is simplified by the fact that our frame-
work only replicates data to a single node. This means
that we do not have to coordinate replicas.

3 Evaluation

We characterized the performance of our RVM back-
end implementations by writing several benchmark ap-
plications and running them on our Firebox-0 cluster.
Firebox-0 is a research cluster built by Berkeley’s AS-
PIRE lab and consists of high-end commercial off-the-
shelf server connected by Mellanox Infiniband switches.

3.1 Micro Benchmarks

We used micro-benchmarks to test the performance of
RVM commits and RVM recovery. To test commits,
we allocated a number of pages, made modifications to
each one of them, and measured the time it took for

0 2000 4000 6000 8000 10000
Num. Pages

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
im

e
 (

s)

Figure 5: IB Commit Micro-Benchmark Results

rvm_txn_commit() to complete. To test recovery, we
first allocated a number of pages and close the con-
nection to the server. We then restart the connec-
tion using the recovery flag and time how long it takes
rvm_cfg_create() to complete. When benchmarking
the IB backend, we run three trials for each number of
pages, restarting the server after each trial.

3.2 IB Backend

Figure 5 shows the results of the commit micro-
benchmark using the IB backend. At the smallest page
count, the commit time is around 150 microseconds.
At 10K pages, the commit time has increased to 140
milliseconds. As can be seen in the graph, the relation
between page count and commit time is fairly linear,
with a slope of about 13.7 microseconds per page. From
examining the performance of rvm_txn_commit() us-
ing the profiler, we find that commit time is taken up
mostly by sending the MULTI TXN CP commands to
the server, as well as performing RDMA writes to the
remote memory pool. Since these the number of com-
mands and writes that need to be done scales linearly
with the number of pages, this accounts for the linear
increase.

Figure 6 shows the results of the recovery micro-
benchmark using the IB backend. Recovery is quite
a bit slower than commit. Recovering a single page
takes about 50 milliseconds, while recovering 10,000
pages takes more than 2 seconds. The relationship be-
tween number of pages and recovery time is also not
entirely linear. The slope seems to increase at about
5000 pages.

From profiling, we find that a large portion of time
in recovery is spent fetching the data for the recovered
pages using RDMA reads. However, an even larger

5

0 2000 4000 6000 8000 10000
Num. Pages

0.0

0.5

1.0

1.5

2.0

2.5

3.0
T
im

e
 (

s)

Figure 6: IB Recovery Micro-Benchmark Results

portion of the time is spent registering pages with the
Infiniband driver. There is a potential optimization we
could make here. A lot of the pages being allocated
are contiguous and so can be registered all at once.
Instead, we register each page one by one. Similarly,
data for contiguous pages could be fetched by a single
RDMA read, instead of one read for each page.

We are uncertain what is causing the non-linear in-
crease in recovery time. It is possible that registering
pages with the Infiniband driver takes longer as the
total number of pages registered grows larger.

3.3 Ramcloud Backend

Figure 7 shows the results of the commit micro-
benchmark when using the RAMCloud backend. The
end-to-end latency of a commit operation is dominated
by the number of pages to be committed, as each page
write requires a round-trip to the RAMCloud server.
The RAMCloud backend also needs to save the table
that contains the mapping between tags and keys in,
but this only requires one interaction with the server.
The RAMCloud backend requires roughly 10 microsec-
onds to write a page to RAMCloud. As can be seen
in the graph, the commit time grows linearly with the
number of pages as expected.

Figure 8 shows the results of the recovery micro-
benchmark. The end-to-end recovery time is mostly
dominated by the time to establish a connection with
the RAMCloud server (roughly 80ms). Once the con-
nection is established the RAMCloud backend retrieves
the pages previously committed. The time to do this
is dominated by the communication with the server, as
in the commit benchmark, which grows linear with the
number of pages. Because of this we see a linear recov-
ery time increase as the number of pages increases.

0 2000 4000 6000 8000 10000

0
20

40
60

80
10

0

Commit latency Micro−Benchmark
 (RAMCloud backend)

Number of Pages

La
te

nc
y

(m
s)

Figure 7: Commit time micro-benchmark when using
the RAMCloud backend

0 1000 2000 3000 4000 5000

80
10

0
12

0
14

0
Recovery latency Micro−Benchmark
 (RAMCloud backend)

Number of Pages

La
te

nc
y

(m
s)

Figure 8: Recovery time micro-benchmark when using
the RAMCloud backend

3.4 BLCR Microbenchmark

To compare our implementation against an existing
tool, we ran similar microbenchmarks for the Berke-
ley Labs Checkpoint Restart (BLCR) tool. The mi-
crobenchmark maps in a given number of pages of
memory and makes modifications to it. We mea-
sure commit time by having the process call the
”cr checkpoint” program on its own PID and timing
how long it takes for the checkpoint program to run.
The ”cr checkpoint” program saves the process state
to a file. We can measure recovery time by running

6

0 2000 4000 6000 8000 10000
Num. Pages

0.0

0.1

0.2

0.3

0.4

0.5

0.6
T
im

e
 (

s)

Figure 9: BLCR Commit Micro-Benchmark Results

0 2000 4000 6000 8000 10000
Num. Pages

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
im

e
 (

s)

Figure 10: BLCR Recovery Micro-Benchmark Results

”cr restart” on the checkpoint file and timing how long
it takes for the program to run to completion.

As seen in Figure 9, commit latency for BLCR is
considerably longer than for either of the two RVM
backends. For a single page, commit takes approxi-
mately 60 milliseconds, and the commit time increased
by 47 microseconds per page.

Recovery time (Figure 10 does not show a clear trend
as the number of pages increases, but the time is always
rather slow, taking around one to two seconds to restart
the application.

3.5 DGEMV

Our first attempt at making a realistic application re-
coverable was an iterative dense matrix-vector multiply
(DGEMV) code. This application repeatedly multi-

1 5 10 20 50 100 none

RVM
File

To
ta

l t
im

e
(s

)
0

5
10

15
20

25

Total Execution Time - DGEMV
 (w/ different commit rates)

Figure 11: Total time of DGEMV application when
committing at different rates

plies a vector by a constant matrix. Since the matrix
is constant, the only state that needs to be preserved
is the vector and the last successful iteration. This
makes DGEMV somewhat of a best-case scenario for
traditional recovery schemes. The state is a single large
allocation that changes entirely on each iteration. In
the following experiments, our RVM implementation
is compared with a manual serialization scheme that
writes to SSD’s on our experimental system. The ma-
trix was chosen to be of dimension 1Mx100 with 100
iterations in order to maximize the critical state and
stress the recovery schemes.

In figure 11 we vary the commit rate (in terms of
iterations) from 1 (every time) to 100 (only one com-
mit) without failures. This essentially measures the
overhead caused by recovery. In all cases, RVM intro-
duces less overhead. This is likely due to the efficient
nature of RVM checkpoints. More interesting, how-
ever, is when we introduce failures. In figure 12, we
always commit on each iteration, but inject failures
after different numbers of iterations (from each itera-
tion up to a single failure). In this case, the file-based
backend is faster than RVM for high failure rates, but
slower with low failure rates. We believe this is due to a
higher startup cost for the file-based approach. It also
demonstrates that reading a relatively large, sequential
file from an SSD is very performant and competes will
with RDMA. We believe that further optimizations in
the RMEM layer could make up some of this difference,
see Section 5 for some possible performance enhance-
ments.

7

1 5 10 20 50 100

RVM
File

To
ta

l t
im

e
(s

)
0

50
10

0
15

0
Total Execution Time - DGEMV
 (w/ different failure rates)

Figure 12: Total time of DGEMV application when
failing/recovering at different rates

3.6 Gene Assembly

For a more complex benchmark, we ported the de novo
genome assembly code that was the basis of home-
work 3. This code involves the use of a large hash-
table (rough 100MB with our test input) as well as
several linked-lists and other complex data structures.
In some ways, this is a best-case scenario for RVM. On
each checkpoint, only a fraction of the data is changed,
and much of the memory is constant (the input file).
While we initially intended to implement a manual
serialization as we had done for DGEMV, it quickly
became apparent that such an undertaking would be
almost as involved as writing the application in the
first place. We instead decided to compare it against
a popular process-level checkpointer called BLCR [4].
While DGEMV needed only to store the vector and
an iteration number, the genome assembly code was
considerably more complicated. Execution consists of
two main phases. In the build phase, kmers are read
from a file and inserted into a hash table. The probe
phase probes into this hash table in order to construct
the final contigs. To capture this pattern, a global
state structure was allocated from recoverable mem-
ory. This global state stores shared structures such
as the hash table and start-kmer list, which phase is
currently being executed (build or probe), and then
provides an opaque phase state pointer to be filled in
by phase-specific code. The build phase keeps track
of where in the input file it was, while probes state is

10K 100K 1M 4M none

RVM
BLCR

Total Execution Time - Genomic
 (w/ different commit rates)

To
ta

l t
im

e
(s

)
0

50
10

0
15

0
20

0
25

0
30

0

Figure 13: Total time of genomic assembly application
when committing at different rates. Total time when
running BLCR at a rate of 10K is not shown

more complex. It needs to preserve which start-kmer
it was processing, where in the current contig it was,
and where in the output file it was writing. Each phase
processed all 4 million kmers, for a total of 8 million
processing steps.

In figure 13 we vary the commit rate (in terms of
number of processing steps) from every 10 thousand
(out of 8 million) up to 4 million (one checkpoint per
phase). At higher commit rates, RVM clearly outper-
forms BLCR. In the exreme, RVM was able to com-
plete in 800 seconds with a commit rate of 10K, while
we were forced to cancel the BLCR run after 30 min-
utes. Even at more reasonable commit rates such as
1 million (8 commits), RVM was nearly twice as fast
as BLCR. It’s only at the extreme low end of commit
rates (4 million and no commit) that BLCR was faster.
This is because RVM pays a significant up-front cost
to allocate it’s large recoverable state. Further anal-
ysis showed that of the 10 seconds spent at a 4 mil-
lion commit rate, a full 5s were spent simply allocating
memory, while build took only 2s and probe only 1s.
This clearly indicates a performance bottlenect in our
system, although we do not believe it is fundemental to
the approach. See Section 5 for a discussion of possible
performance improvements.

3.7 In-Memory Filesystem (RvmFS)

To demonstrate the flexibility and applicability of our
framework we have applied our framework to RvmFS, a
VFS compliant in-memory file system (see Figure 14).
RvmFS uses main memory as the only storage medium
to provide very fast writes and reads. To be able to
use our framework we have developed the file system

8

RMEM

RVM

In-Memory File System

VFS

FUSE

Userspace

Kernel

libc

ls /mount

Figure 14: In-memory file system design when using
the RVM framework and FUSE library.

using FUSE, a kernel module that allows the creation
of user-space file systems. RvmFS performs a commit
of the file system in different situations: 1) an inode
is created, 2) when a file is closed and 3) when a sync
operation is performed.

To evaluate the performance of the system we ran a
subset of the benchmarks in the Filebench [3] bench-
mark suite. We compare the performance of the bench-
mark when running it against an ext4 file system
backed by an SSD drive and when running on RvmFS
backed by a remote server. Table 2 describes each spe-
cific benchmark that we ran and table 3 shows the
performance obtained. We show the average latency
of each operation in each benchmark.

Benchmark name Description

file micro create Create an empty file and issue 1024 appends of 1MB each
ramdomread Random reads (8K) from a file with size 1Mb

openfiles
Creates a fileset with 500 empty files,
then proceeds to open each one.

Table 2: Description of the macro-benchmark tests
used to evaluate RvmFS.

Discussion As shown in Table 3, RvmFS is consid-
erably slower for some specific benchmarks while ob-
taining similar performance in others. The poor perfor-
mance of the file system stems from different reasons.
First, some of the file system operations are not opti-
mized for performance. For instance, when extending
a file length, RvmFS allocates a new region of memory
and copies all the file contents to the new region. Not
only copying all the data is slow, this also means that
the next commit operation will backup the whole file
contents even if only a small part of the file changed.
Secondly, RvmFS currently does not support multi-
threaded access, common in modern file systems such
as ext4. Thirdly, RvmFS is ultimately limited by the
performance of RVM. Due to the high overheads in-
volved when backing up large contiguous regions of
memory in RVM, RvmFS suffers. Finally, RvmFS is

Benchmark
name

Latency per Op. (SSD) Latency per Op. (RvmFS)

file micro create append-file: 292us 2967.7ms
randomread Read: 25us Read: 25us
openfiles Open/close: 590us Open: 2842us, Close: 740us

Table 3: Macro benchmark results of RvmFS

not built with locality of storage in mind. This means
that simple operations can touch many files.

Next we comment on the performance of each bench-
mark.

file micro create The performance of RvmFS is far
from the performance of ext4. This has to do with the
inefficiency of RvmFS when extending the length of a
file, as previously described.

randomread In this benchmark RvmFS has similar
performance to the ext4 file system. Because the file
being used to benchmark the read operations is small
it can fit in memory. This favours ext4, which can rely
on the kernel buffers to directly serve data.

openfiles In this benchmark the close operation in
RvmFS is on par with the performance of ext4. On the
other hand, the open operation is roughly four times
slower.

4 Related Work

Virtual machine / Container checkpoint Sys-
tems such as Tardigrade [5] or VMWare provide data
fault-tolerance by checkpointing containers and virtual
machines, respectively. While these systems can check-
point a program’s data without knowing the program’s
internals they still have limitations. First, using virtual
machines incurs a non-negligible performance overhead
on virtualized applications. Secondly, checkpointing an
entire virtual machine or container can be much more
expensive than necessary. We believe RVM provides
a small API that can be used to checkpoint only the
data that matters to the user, and thus it can provide
better performance with minimal developer effort.

Key-value stores and DBMSs Key-value stores
such as RAMCloud and DBMSs such as Postgres can
be used to store a program’s data to remote nodes and
provide similar properties as RVM. While we believe
that many of the techniques and lessons used in these
systems can be applied in RVM, we think these sys-
tems are not a good fit for the replication of in-memory
data structures. First, most modern key-value stores
do not provide atomic multi-key writes – required to
atomically store large memory regions. Secondly, the

9

API provided by key-value stores despite being simple
is not suitable for virtual memory replication, forcing
developers to serialize data structures into a suitable
format. Likewise, DBMSs sacrifice data access latency
in favour of database features that are not required in
this context. Additionally, the schema model required
by traditional DBMSs does not fit well with arbitrarily-
sized regions of memory.

Virtual memory replication Systems like Mo-
jim [7] or LRVM [6] can be used to replicate virtual
memory. However, Mojim’s interface is considerably
more complicated than ours. Mojim provides a vir-
tual filesystem and the user allocates recoverable mem-
ory by memory mapping files. Mojim does not ensure
that the recoverable pages are mapped into the same
space in virtual memory, so pointers cannot be prop-
erly recovered. In addition, for each commit, the user
must explicitly specify what memory to replicate, as
the modified pages are not automatically detected as
in our system.

5 Conclusion and Future Work

In this paper, we presented Recoverable Virtual Mem-
ory, our solution for easy replication and recovery of
application state. We have attempted to provide our
implementation with features we believe are highly de-
sirable for the application programmer, such as a sim-
ple and understandable API; restoration of virtual ad-
dress locations, which allows for recovery of complex
data structures without the need for serialization; and
reasonably low overhead. Of these three goals, we have
accomplished the first two, but there is still consider-
able work to be done in regards to performance.

The most obvious optimization we could make is to
coalesce RDMA operations for contiguous pages. In
our current infiniband backend, allocation of the back-
ing memory for multiple contiguous pages must be
done a page at a time. However, it would be much more
efficient to perform a single contiguous allocation on
the server side. That way, the number of RDMA write
calls and TXN MULTI CP messages does not need
to increase as the number of pages increases. There
are probably other areas for performance improvement
that we could discover through more intensive profiling
of the benchmark programs.

Another avenue we could explore are alternative
backends for the RMEM layer. There are various net-
working and non-volatile memory technologies that we
could investigate, such as SSDs and RDMA over Con-
verged Ethernet. We could also implement different
consistency semantics to explore the tradeoffs of per-
formance and consistency.

Finally, we would like to integrate RVM with existing
runtimes and recovery frameworks to provide a more
complete data replication and recovery solution.

The complete code for our RVM im-
plementation is available on GitHub at
https://github.com/zhemao/rmem-server.

References

[1] https://research.cs.wisc.edu/htcondor/

checkpointing.html.

[2] http://gasnet.lbl.gov/.

[3] http://sourceforge.net/apps/mediawiki/

filebench/index.php, 2013.

[4] J. Cornwell and A. Kongmunvattana. Efficient
system-level remote checkpointing technique for
blcr. In Information Technology: New Generations
(ITNG), 2011 Eighth International Conference on,
pages 1002–1007, April 2011.

[5] J. R. Lorch, A. Baumann, L. Glendenning,
D. Meyer, and A. Warfield. Tardigrade: Leveraging
lightweight virtual machines to easily and efficiently
construct fault-tolerant services. In 12th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 15), pages 575–588, Oakland,
CA, May 2015. USENIX Association.

[6] M. Satyanarayanan, H. H. Mashburn, P. Kumar,
D. C. Steere, and J. J. Kistler. Lightweight recov-
erable virtual memory. ACM Trans. Comput. Syst.,
12(1):33–57, Feb. 1994.

[7] Y. Zhang, J. Yang, A. Memaripour, and S. Swan-
son. Mojim: A reliable and highly-available non-
volatile memory system. In Proceedings of the
Twentieth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’15, pages 3–18, New
York, NY, USA, 2015. ACM.

10

https://research.cs.wisc.edu/htcondor/checkpointing.html
https://research.cs.wisc.edu/htcondor/checkpointing.html
http://gasnet.lbl.gov/
http://sourceforge.net/apps/mediawiki/filebench/index.php
http://sourceforge.net/apps/mediawiki/filebench/index.php

	Introduction
	Current Solutions
	RVM Interface

	Design
	The RVM API
	The Block Table
	Initialization and Recovery Procedure
	Allocation
	Marking a Point of Consistency

	The Remote Memory Layer
	Infiniband Backend
	Allocation
	Commit
	Recovery

	RAMCloud Backend

	Evaluation
	Micro Benchmarks
	IB Backend
	Ramcloud Backend
	BLCR Microbenchmark
	DGEMV
	Gene Assembly
	In-Memory Filesystem (RvmFS)

	Related Work
	Conclusion and Future Work

